Testes de hipóteses para os parâmetros
Testes de Hipóteses para Parâmetros (Estatística para Concursos)
1. Conceitos Básicos
- Hipótese Nula (H₀): Afirmação inicial sobre um parâmetro (ex: μ = μ₀). Assume-se verdadeira até que os dados provem o contrário.
- Hipótese Alternativa (H₁): Afirmação contrária a H₀ (ex: μ ≠ μ₀, μ > μ₀ ou μ
- Nível de Significância (α): Probabilidade de rejeitar H₀ quando ela é verdadeira (erro Tipo I). Comum: 1%, 5% ou 10%.
- Estatística de Teste: Valor calculado a partir da amostra (ex: t, z, F) usado para decidir sobre H₀.
2. Testes Paramétricos Comuns
- Média Populacional (μ):
- Variância conhecida: Teste Z (distribuição normal).
- Variância desconhecida: Teste t-Student (amostras pequenas, n
- Proporção Populacional (p): Teste Z para proporções (np e n(1-p) ≥ 5).
- Variância Populacional (σ²): Teste Qui-Quadrado (χ²).
- Comparação de 2 Médias: Teste t para amostras independentes ou pareadas.
3. Passos para Realizar um Teste
- Definir H₀ e H₁.
- Escolher α e identificar a estatística de teste.
- Calcular o valor crítico ou p-valor.
- Tomar decisão: Rejeitar H₀ se p-valor ≤ α ou se estatística cair na região crítica.
4. Erros e Poder do Teste
- Erro Tipo I: Rejeitar H₀ quando ela é verdadeira (α).
- Erro Tipo II (β): Não rejeitar H₀ quando ela é falsa.
- Poder do Teste (1 - β): Probabilidade de rejeitar H₀ quando ela é falsa.
5. Dicas para Concursos
- Memorize as condições de aplicação de cada teste (ex: tamanho da amostra, variância conhecida).
- Pratique a interpretação de p-valor: "Probabilidade de obter resultados tão extremos quanto os observados, assumindo H₀ verdadeira".
- Atenção a testes unicaudais (>" ou "